Bautin Ideals and Taylor Domination

نویسنده

  • Y. Yomdin
چکیده

We consider families of analytic functions with Taylor coefficients-polynomials in the parameter λ: fλ(z) = ∑∞ k=0 ak(λ)z k, ak ∈ C[λ]. Let R(λ) be the radius of convergence of fλ. The “Taylor domination” property for this family is the inequality of the following form: for certain fixed N and C and for each k ≥ N + 1 and λ, |ak(λ)|R(λ) ≤ C max i=0,...,N |ai(λ)|R(λ). Taylor domination property implies a uniform in λ bound on the number of zeroes of fλ. In this paper we discuss some known and new results providing Taylor domination (usually, in a smaller disk) via the Bautin approach. In particular, we give new conditions on fλ which imply Taylor domination in the full disk of convergence. We discuss Taylor domination property also for the generating functions of the Poincaré type linear recurrence relations. 2010 Mathematics Subject Classification: 34C05, 34C25, 30B10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Liénard Equations, Cyclicity and Hopf–Takens Bifurcations

We investigate the bifurcation of small–amplitude limit cycles in generalized Liénard equations. We use the simplicity of the Liénard family, to illustrate the advantages of the approach based on Bautin ideals. Essentially, this Bautin ideal is generated by the so–called Lyapunov quantities, that are computed for generalized Liénard equations and used to detect the presence of a Hopf– Takens bi...

متن کامل

Monomial Ideals with Linear Quotients Whose Taylor Resolutions Are Minimal

We study when Taylor resolutions of monomial ideals are minimal, particularly for ideals with linear quotients.

متن کامل

ul 2 00 4 Center conditions : Rigidity of logarithmic differential equations 1 Hossein

In this paper we prove that any degree d deformation of a generic logarithmic polynomial differential equation with a persistent center must be logarithmic again. This is a generalization of Ilyashenko’s result on Hamiltonian differential equations. The main tools are Picard-Lefschetz theory of a polynomial with complex coefficients in two variables, specially the Gusein-Zade/A’Campo’s theorem ...

متن کامل

M ay 2 00 2 Center conditions : Rigidity of logarithmic differential equations

In this paper we prove that any degree d deformation of a generic logarithmic polynomial differential equation with a persistent center must be logarithmic again. This is a generalization of Ilyashenko’s result on Hamiltonian differential equations. The main tools are PicardLefschetz theory of a polynomial with complex coefficients in two variables, specially the Gusein-Zade/A’Campo’s theorem o...

متن کامل

Componentwise Linear Ideals with Minimal or Maximal Betti Numbers

We characterize componentwise linear monomial ideals with minimal Taylor resolution and consider the lower bound for the Betti numbers of componentwise linear ideals. INTRODUCTION Let S = K[x1, . . . ,xn] denote the polynomial ring in n variables over a field K with each degxi = 1. Let I be a monomial ideal of S and G(I) = {u1, . . . ,us} its unique minimal system of monomial generators. The Ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014